Constructing Multi-Resolution Markov State Models (MSMs) to Elucidate RNA Hairpin Folding Mechanisms
نویسندگان
چکیده
Simulating biologically relevant timescales at atomic resolution is a challenging task since typical atomistic simulations are at least two orders of magnitude shorter. Markov State Models (MSMs) provide one means of overcoming this gap without sacrificing atomic resolution by extracting long time dynamics from short simulations. MSMs coarse grain space by dividing conformational space into long-lived, or metastable, states. This is equivalent to coarse graining time by integrating out fast motions within metastable states. By varying the degree of coarse graining one can vary the resolution of an MSM; therefore, MSMs are inherently multi-resolution. Here we introduce a new algorithm Super-level-set Hierarchical Clustering (SHC), to our knowledge, the first algorithm focused on constructing MSMs at multiple resolutions. The key insight of this algorithm is to generate a set of super levels covering different density regions of phase space, then cluster each super level separately, and finally recombine this information into a single MSM. SHC is able to produce MSMs at different resolutions using different super density level sets. To demonstrate the power of this algorithm we apply it to a small RNA hairpin, generating MSMs at four different resolutions. We validate these MSMs by showing that they are able to reproduce the original simulation data. Furthermore, long time folding dynamics are extracted from these models. The results show that there are no metastable on-pathway intermediate states. Instead, the folded state serves as a hub directly connected to multiple unfolded/misfolded states which are separated from each other by large free energy barriers.
منابع مشابه
Elucidate Rna Hairpin Folding Mechanisms
Simulating biologically relevant timescales at atomic resolution is a challenging task since typical atomistic simulations are at least two orders of magnitude shorter. Markov State Model (MSMs) provide one means of overcoming this gap without sacrificing atomic resolution by extracting long time dynamics from short simulations. MSMs coarse grain space by dividing conformational space into long...
متن کاملUsing path sampling to build better Markovian state models: predicting the folding rate and mechanism of a tryptophan zipper beta hairpin.
We propose an efficient method for the prediction of protein folding rate constants and mechanisms. We use molecular dynamics simulation data to build Markovian state models (MSMs), discrete representations of the pathways sampled. Using these MSMs, we can quickly calculate the folding probability (P(fold)) and mean first passage time of all the sampled points. In addition, we provide technique...
متن کاملMSMExplorer: visualizing Markov state models for biomolecule folding simulations
SUMMARY Markov state models (MSMs) for the study of biomolecule folding simulations have emerged as a powerful tool for computational study of folding dynamics. MSMExplorer is a visualization application purpose-built to visualize these MSMs with an aim to increase the efficacy and reach of MSM science. AVAILABILITY MSMExplorer is available for download from https://simtk.org/home/msmexplorer...
متن کاملUsing Markov state models to study self-assembly.
Markov state models (MSMs) have been demonstrated to be a powerful method for computationally studying intramolecular processes such as protein folding and macromolecular conformational changes. In this article, we present a new approach to construct MSMs that is applicable to modeling a broad class of multi-molecular assembly reactions. Distinct structures formed during assembly are distinguis...
متن کاملProtein folding is mechanistically robust.
Markov state models (MSMs) have proven to be useful tools in simulating large and slowly-relaxing biological systems like proteins. MSMs model proteins through dynamics on a discrete-state energy landscape, allowing molecules to effectively sample large regions of phase space. In this work, we use aspects of MSMs to ask: is protein folding mechanistically robust? We first provide a definition o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing
دوره شماره
صفحات -
تاریخ انتشار 2010